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Abstract 
  We report on real-time control of 

balloon inflation inside porcine arteries. In a first 

step, experiments were done in a coronary artery 

of an excised heart. In a second step, experiments 

were done in a beating heart setup providing 

conditions very close to in vivo conditions without 

the complications. A programmable syringe 

pump was used to inflate a compliant balloon in 

arteries, while intravascular optical coherence 

tomography (IVOCT) monitoring was 

performed. In a feedback loop, IVOCT images 

were processed to provide the balloon diameter 

values in real-time to control the pump action in 

order to achieve a target diameter. In different 

experiments, various flow rates and target 

diameters were used. In the excised heart 

experiment, there was good convergence to target 

diameters resulting in a satisfactory balloon 

inflation control. In the beating heart 

experiment, there were oscillations in the 

diameter values due to cyclic arterial 

contractions. In these experiments, the control 

system maintained diameter averages 

satisfactorily close to predetermined target 

values. Real-time control of balloon inflation 

could not only provide a safer outcome for 

angioplasty procedures but could also provide 

additional information for diagnostics since it 

implicitly provides information about the artery 

response to the inflation process.  

 

Keywords- Angioplasty, control, optical 

coherence tomography (OCT), real-time systems. 

I.  INTRODUCTION  

 Atherosclerosis is a disease in which 
accumulation of plaque in the walls of the artery 

restrains the flow of oxygen-rich blood and 

appropriate feeding of organs [1]. Intravascular 

imaging techniques, such as intravascular ultrasound 

(IVUS) [2] and intravascular optical coherence 

tomography (IVOCT) [3-5], have been applied as 

techniques with resolutions superior to X-ray 

fluoroscopy to visualize the artery walls and 

plaques. Some clinician have proposed the use of 

IVUS [6, 7] and IVOCT [8] to verify the results of 

treatments such as angioplasty. Intravascular  

 
balloon inflation  has been applied in different 

medical procedures, such as angioplasty. In these 

procedures, balloon inflation is usually performed  

 

manually. Computerized balloon inflation has been 

proposed [9-11] with the aim to improve angioplasty 

results by reducing arterial injury which is linked to 

undesired phenomena, such as restenosis [12]. 

Restenosis is the renarrowing of the artery which 

may happen after the intervention. Previously [13], 

we proposed a method to control the luminal 

diameter of arteries during angioplasty balloon 
inflation. As a first experimental validation, we 

tested this method using a semi-compliant balloon 

and an artery phantom [14]. In the proposed method, 

the balloon inflation was controlled in order to 

achieve a target luminal diameter for the phantom. 

Using an edge detection algorithm, the lumen of the 

phantom was detected in IVOCT images that were 

continuously acquired during the inflation. The 

lumen diameter was estimated in real-time and 

compared with the target diameter. Based on this 

comparison, a controller sent commands to a 
programmable pump to deliver or withdraw liquid 

until the target diameter was achieved. The 

proposed control method could improve angioplasty 

results by reducing arterial injury during balloon 

inflation. It could also reduce the exposure to X-ray, 

as the guidance is partly provided by IVOCT. 

Further safety advantages include a more repeatable 

inflation procedure since conditions are better 

controlled and a constant visualization of the 

response of the artery wall to deformation since it is 

implicitly provided by the IVOCT imaging. In this 

study, we extend our experimental validation of 
balloon inflation control to porcine arteries, both in 

ex vivo and close to in vivo conditions. Experiments 

were performed using a compliant balloon. First, 

controlled inflation was performed in arteries of an 

excised porcine heart. The goal was to assess the 

performance of the control system in response to 

dynamics of the compliant balloons and real porcine 

arteries. Inflation control in real arteries was a step 

forward from our preliminary work on phantoms 

[13]. In a further advance, i.e., a beating heart setup, 

we simulated two realistic aspects of the in vivo 
condition, namely, the presence of a blood flow and 

the presence of cyclic arterial contractions during 

the heart beat. We investigated if the edge detection 

could be performed in presence of blood. We also 

investigated if the control system could robustly 

provide convergence to target diameters in presence 

of arterial contractions.    
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II. MATERIALS AND METHOD 

A. Optical Coherence Tomography System  

 A custom-built SS-OCT system was used 

for imaging [15]. We used a wavelength-swept laser 

source (Santec, HSL2000), operating with a sweep 

rate of 30 kHz and a sweep range of over 108 nm 

around 1.33 μm wavelength to provide a measured 

axial resolution of about 15 μm in air. The SS-OCT 

system was configured as a Mach-Zehnder 

interferometer with balanced detection and was 

packaged as a mobile unit. SS-OCT imaging was 
performed at 30 frames per second. 

 

B. IVOCT Imaging through a complian Baloon  

 The IVOCT probe was composed of a 

single-mode fiber enclosed within a spiral metallic 

tube in the proximal region and in a flexible 
polymer tube in the distal region. Near the tip of the 

catheter, the light exiting from the fiber was focused 

by a gradient-index (GRIN) lens and was redirected 

by a right-angle prism. The ensemble was enclosed 

in a stainless steel ferrule with an outer diameter of 

0.7 mm. The probe was inserted in a balloon 

catheter. The balloon catheter was based on a 

transparent polymer sheath that contained and 

protected the probe. A compliant balloon was used 

to deform the artery. The compliant balloon was a 

silicon membrane which was glued to the balloon 
catheter. A liquid was used to inflate the balloon 

through a few holes punched in the polymer sheath. 

The liquid also facilitated the rotation of the probe 

and provided a transparent medium for imagery. In 

our experiments, we used water for balloon 

inflation. A soft tip was attached to the distal end of 

the balloon catheter to help navigate the catheter 

through the artery without causing damage. IVOCT 

imaging of the vessel walls was performed through 

the balloon. 

 

C. Porcine heart experiments 

 Balloon inflation control experiments were 

performed in porcine coronary arteries in two 

different setups, one using an excised heart and the 

other using a beating heart model.  

 Excised heart experiment  
Three days before the day of the experiment, a 

frozen porcine heart was allowed to defrost. On the 

day of the experiment, some excess segments of 

aorta were trimmed to facilitate access to coronary 

arteries. Through the aorta, the balloon catheter and 

the IVOCT probe were inserted in the left anterior 

descending (LAD) coronary artery for experiments.  

 Beating heart experiment  

The beating heart experiments were conducted 

according to regulations laid out by the Canadian 

Council on Animal Care and were approved by a 
local Animal Care Committee of the National 

Research Council of Canada. The details of the 

beating heart model have been reported previously 

[15]. In this paper, the same model was used to 

investigate the performance of our inflation control 

method. Commercial swine was acclimatized in the 

animal facility, one week before experiments. On 

the day of the experiment, the animal was first 
anaesthetized. The chest was opened and the heart 

was arrested. The heart was separated, rinsed and 

put in a cold saline bath. It was cannulated and 

prepared for perfusion. It was then hung over a 

funnel and perfused with body temperature blood 

and Krebs-Heinseleit solution in equal proportions. 

Once the heart warmed up and showed signs of 

activity, it was defibrillated to establish a normal 

rhythm. The balloon catheter and the IVOCT probe 

were inserted through in the LAD artery through an 

introducer. The beating heart setup is illustrated in 

Fig. 2. The beating heart model was helpful in 
generating conditions similar to an in vivo setup 

without the associated complications of a full animal 

preparation. The setup remained functional for 

several hours. In our experiments, it allowed us to 

investigate the efficiency of our image analysis and 

control algorithms in presence of arterial 

contractions and blood flow.  

D. IVOCT Images 

 In this section, we present a sample image 

obtained from a beating heart experiment. An 

IVOCT image in polar coordinates and in Cartesian 

coordinates, illustrating the balloon inside the artery. 

The balloon was not yet inflated. The arterial wall 

was not visible at many angles, where the blood was 

occluding the view by scattering the light. The 

polymer sheath and the balloon were represented 

each by two contours, corresponding to their inner 
and outer surfaces. The prism surface was 

represented by a contour, which was detected and 

used as a reference to register all images in the 

radial direction, as reported previously [13]. In order 

to process and analyze IVOCT images, we used the 

polar coordinates, providing the image in a matrix 

format. The horizontal and the vertical axes 

correspond to the probe rotation angle and the radial 

depth, respectively. The primary axes (left and 

below) represent pixel values. The values on the 

secondary horizontal axis (top) represent the angle 

in degrees. The values on the secondary vertical axis 
(right) represent the depth in millimeters in optical 

distance, i.e. the product of geometrical length and 

the refractive index.Each column in the image 

matrix represents depth scanning at a particular 

angle and is called an A-scan. Two sample A-scans, 

A-scan “A” and A-scan “B” are depicted by red 

lines. The “x” marks on these A-scans correspond to 

sample detected balloon nodes, used to characterize 

the diameter. A-scan A provides a sample depth 

profile for a segment of the image where 

visualization of the vessel wall was obstructed by 
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blood. A-scan B provides a sample depth profile for 

the segment of the image where the balloon was in 

the vicinity of the vessel wall and where there was 

almost no blood trapped between the balloon and 

the vessel wall. In this segment, better visualization 

of the vessel wall structure was provided; the vessel 

wall layers, namely, intima, media and adventitia 
could be distinguished. In our images, there were 

about 1000 A-scans per rotation, resulting in a 0.4˚ 

angular resolution. The radial pixel size in the 

presented images was 8 μm in optical distance. 

 

E. Estimation of Luminal Diameter 

 In our control algorithm, we used the 

diameter of the balloon in the feedback loop. The 

balloon diameter was obtained from real-time 

detection of the contour corresponding to the outer 

surface of the balloon. Using this algorithm, we first 

selected a number of A-scans, distributed at equal 

angles over a full rotation. Each A-scan was 

averaged with A-scans within a neighborhood. A 

median filter was then applied to the result, followed 

by a gradient operator. The balloon contour node 

corresponded to an edge and was detected as the 

maximum of the gradient. A more detailed 
description of this algorithm was reported earlier 

[13]. In order to obtain the depth of the detected 

balloon nodes in geometrical distance, the prism 

surface was also detected as a reference. The prism 

surface appeared as a peak on each A-scan. 

Therefore, it was detected using a peak detection 

technique. Before proceeding to control 

experiments, we tested our algorithm on images 

acquired during manual inflation in a previous 

beating heart experiment, where no control was 

applied. Balloon detection in a sample image and in 
an image sequence in the form of a video clip 

(available at http://ieeexplore.ieee.org). In all 

images, 24 contour nodes were detected represented 

as red dots. Let j denote the index of a processed A-

scan and ij denote the depth of the obtained balloon 

node on this A-scan in pixels. The depth value of the 

detected node in geometrical distance, rp is the 

distance from the center of rotation to the surface of 

the prism, iR is the depth of the prism surface in 

pixels, nw is the refractive index of water, and 

sradial is the radial step size corresponding to each 

pixel (in our calculations, rp=0.15 mm, nw=1.33, 
and sradial=0.008 mm). Once the depth value for 

each contour node was calculated, the average 

lumen diameter was estimated. A great advantage of 

the detection algorithm was that it could be 

performed in real-time. This was a key element that 

allowed this algorithm to be used in a feedback loop 

to control the balloon inflation. 

 

F. Control System Architecture 

 The goal of the control system was to 
provide convergence to a desired balloon diameter. 

A commercial syringe pump (PHD 4400, Harvard 

Apparatus) was used, as an actuator to inflate the 

balloon. The syringe pump was composed of a 

microcontroller and a stepper motor. It could deliver 

a liquid with a customized flow rate. In the feedback 

loop, a PC performed real-time IVOCT image 

analysis to estimate the diameter. If the diameter 

was smaller than the desired diameter, the PC sent a 

command to the pump to deliver liquid. If the 

diameter was larger than the desired diameter, the 
PC sent a command to the pump to withdraw liquid. 

If the diameter was in an acceptable proximity of the 

desired diameter the PC sent a command to stop the 

pump. In our experiments, inflation and deflation 

were performed at a constant flow rate value which 

was determined at the beginning of each 

experiment. The delivered volume was estimated by 

integrating the flow rate. A pressure transducer 

(MLH150PSB01A, Honeywell) was connected to 

the tubing to monitor and record inflation pressures. 

More details on the control system have been 

reported earlier [13]. In angioplasty procedures, first 
a reference luminal diameter is estimated for the 

artery at the location of the stenosis. Then an 

appropriately-sized balloon or stent is deployed to 

achieve this diameter. In our experiments, the 

capability of the control system to provide various 

target diameters was investigated. As was 

mentioned previously, a compliant balloon was used 

in our experiments. Unlike a non-compliant balloon 

that is designed to achieve a fixed nominal diameter, 

the compliant balloon did not have a nominal 

diameter and could be inflated to various diameters, 
continuously, until it reached its burst pressure. This 

property gave us more flexibly in testing the control 

system for various values of the target diameter. The 

speed of the system was tested, using different 

inflation rates. The inflation rate has been suggested 

to be an important factor in some outcomes of 

angioplasty, e.g. restenosis [16, 17]. Therefore, the 

tests using various flow rates addressed an important 

aspect of the controlled inflation system.  

We consider the following anycast field equations 

defined over an open bounded piece of network and 

/or feature space 
dR . They describe the 

dynamics of the mean anycast of each of p node 

populations. 

|

1
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 We give an interpretation of the various 

parameters and functions that appear in (1),   is 

finite piece of nodes and/or feature space and is 
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represented as an open bounded set of 
dR . The 

vector r  and r  represent points in   . The 

function : (0,1)S R  is the normalized sigmoid 

function: 

 

 
1

( ) (2)
1 z

S z
e




  

It describes the relation between the input rate iv  of 

population i  as a function of the packets potential, 

for example, [ ( )].i i i i iV v S V h    We note 

V  the p   dimensional vector 1( ,..., ).pV V The 

p  function , 1,..., ,i i p   represent the initial 

conditions, see below. We note   the  p   

dimensional vector 1( ,..., ).p   The p  function 

, 1,..., ,ext

iI i p  represent external factors from 

other network areas. We note 
extI  the p   

dimensional vector 
1( ,..., ).ext ext

pI I The p p  

matrix of functions , 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  

determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The 

p real positive values , 1,..., ,i i p   determine 

the slopes of the sigmoids at the origin. Finally the 

p real positive values , 1,..., ,il i p   determine 

the speed at which each anycast node potential 

decreases exponentially toward its real value. We 

also introduce the function : ,p pS R R  defined 

by 1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     

and the diagonal p p  matrix 

0 1( ,..., ).pL diag l l Is the intrinsic dynamics of 

the population given by the linear response of data 

transfer. ( )i

d
l

dt
  is replaced by 

2( )i

d
l

dt
  to use 

the alpha function response. We use ( )i

d
l

dt
  for 

simplicity although our analysis applies to more 

general intrinsic dynamics. For the sake, of 

generality, the propagation delays are not assumed 

to be identical for all populations, hence they are 

described by a matrix ( , )r r  whose element 

( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent 

of the populations. We assume for technical reasons 

that   is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus 

no assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential 

factor V  on interval [ ,0].T  The value of T  is 

obtained by considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

Hence we choose mT   

 

G. Mathematical Framework 

A convenient functional setting for the non-delayed 

packet field equations is to use the space 
2 ( , )pF L R   which is a Hilbert space endowed 

with the usual inner product: 

 
1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0 ([ ,0], )mC C F   with 

[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we 

write (1) as  
.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


 
  

Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the 

papers on this subject assume   infinite, hence 

requiring .m      

 

 

Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0 ( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     
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Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 
 

H. Boundedness of Solutions 

A valid model of neural networks should only 

feature bounded packet node potentials.  

 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
    

Proof :Let us defined :f R C R   as 

2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
       

We note 1,...min i p il l   

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t    

  

Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l


 
     

  

 Let us show that the open route of F  of 

center 0 and radius , ,RR B  is stable under the 

dynamics of equation. We know that ( )V t  is 

defined for all 0t s  and that 0f   on ,RB  the 

boundary of RB . We consider three cases for the 

initial condition 0.V If 
0 C

V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose 

that ,T R  then ( )V T  is defined and belongs to 

,RB  the closure of ,RB  because  
RB is closed, in 

effect to ,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts 

the definition of T. Thus T R  and 
RB is stable. 

 Because f<0 on , (0)R RB V B   implies 

that 0, ( ) Rt V t B   . Finally we consider the 

case (0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 

2
0, 2 ,

F

d
t V

dt
     thus ( )

F
V t  is 

monotonically decreasing and reaches the value of R 

in finite time when ( )V t  reaches .RB  This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity 

of   shows that  

1 1 1

1 1 1
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i i r
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i i r r

r i r

E A E A E
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 
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   

  

  

 

  

Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E

s t d E        

and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 
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K is empty, then part of the hypothesis is vacuously 

satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze’s theorem, f  can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 
2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 

2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on, 

  will be fixed. We shall prove that there is a 

polynomial P  such that  

  

 ( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z


    

 


    

   

Where X  is the set of all points in the support of 

  whose distance from the complement of K  

does not  . (Thus  X contains no point which is 

“far within” K .) We construct  as the 

convolution of f  with a smoothing function A. Put 

( ) 0a r   if ,r  put  

 
2

2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  







    

 

The constants are so adjusted in (6) that (8) holds.  

(Compute the integral in polar coordinates), (9) 

holds simply because A  has compact support. To 

compute (10), express A  in polar coordinates, and 

note that 0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And ( ) 0A    if ,    (3) follows from (8). 

The difference quotients of A  converge boundedly 

to the corresponding partial derivatives, since 
' 2( )cA C R . Hence the last expression in (11) may 

be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) and (13) 

give (4). If we write (13) with x  and y  in place 

of ,  we see that   has continuous partial 

derivatives, if we can show that 0   in ,G  

where G  is the set of all z K  whose distance 

from the complement of K  exceeds .  We shall 

do this by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 

K  for all   with .   The mean value 

property for harmonic functions therefore gives, by 

the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 
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For all z G  , we have now proved (3), (4), and 

(5) The definition of X  shows that X is compact 

and that X  can be covered by finitely many open 

discs 1,..., ,nD D  of radius 2 ,  whose centers are 

not in .K  Since 
2S K  is connected, the center of 

each jD  can be joined to   by a polygonal path in 

2S K . It follows that each jD contains a 

compact connected set ,jE  of diameter at least 

2 ,  so that 
2

jS E  is connected and so that 

.jK E     with 2r  . There are functions 

2( )j jg H S E   and constants jb  so that the 

inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

  

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





  

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

  

(18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

Observe that the inequalities (16) and (17) are valid 

with R  in place of jQ  if X   and .z  

Now fix  .z   , put ,iz e     and estimate 

the integrand in (22) by (16) if 4 ,   by (17) if 

4 .    The integral in (22) is then seen to be less 

than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  
2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

  

Since ( ), ,F H K    and 
2S K  is 

connected, Runge’s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 

 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 

with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following “Cauchy formula” holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, 

as 0,   of 

 
2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 

For each 0,r   is periodic in ,  with period 

2 . The integral of /    is therefore 0, and 

(4) becomes 
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2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

 

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


  

and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A   for the ideal corresponding to 

A  (subspace generated by the ,X a   ). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S    is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are any 

elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in 

it is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 

 
DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 
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PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated 

by single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   

  

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a        

r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 

leading coefficients of the polynomials in a  form 

an ideal 
'a  in A ,  and since A  is Noetherian, 

'a

will be finitely generated. Let 1,..., mg g  be 

elements of a  whose leading coefficients generate 
'a , and let r be the maximum degree of ig . Now 

let ,f a  and suppose f  has degree s r , say, 

...sf aX   Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let 

da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 

degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial df  in 

a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   

of degree 1d  . On applying this remark 

repeatedly we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 

 and so the polynomials 
01 0,,..., mg g  generate a   

 One of the great successes of category 

theory in computer science has been the 

development of a “unified theory” of the 

constructions underlying denotational semantics. In 

the untyped  -calculus,  any term may appear in 

the function position of an application. This means 

that a model D of the  -calculus must have the 

property that given a term t  whose interpretation is 

,d D  Also, the interpretation of a functional 

abstraction like x . x  is most conveniently 

defined as a function from Dto D  , which must 

then be regarded as an element of D. Let 

 : D D D    be the function that picks out 

elements of D to  represent elements of  D D  

and  : D D D    be the function that maps 

elements of D to functions of D.  Since ( )f  is 

intended to represent the function f  as an element 

of D, it makes sense to require that ( ( )) ,f f    

that is, 
 D D

o id 


   Furthermore, we often 

want to view every element of D as representing 

some function from D to D and require that 

elements representing the same function be equal – 

that is   

( ( ))

D

d d

or

o id

 

 





  

 The latter condition is called 

extensionality. These conditions together imply that 

and   are inverses--- that is, D is isomorphic to 

the space of functions from D to D  that can be the 

interpretations of functional abstractions: 

 D D D   .Let us suppose we are working 

with the untyped calculus  , we need a solution 

ot the equation  ,D A D D    where A is 

some predetermined domain containing 

interpretations for elements of C.  Each element of 

D corresponds to either an element of A or an 

element of  ,D D  with a tag. This equation 

can be solved by finding least fixed points of the 

function  ( )F X A X X    from domains to 

domains --- that is, finding domains X  such that 
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 ,X A X X    and such that for any 

domain Y also satisfying this equation, there is an 
embedding of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
R

X

R

Y

f o f id

f o f id




  

 Where f g  means that 

f approximates g  in some ordering representing 

their information content. The key shift of 

perspective from the domain-theoretic to the more 

general category-theoretic approach lies in 

considering F not as a function on domains, but as a 
functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

Definition 1.3: Let K be a category and 

:F K K  as a functor. A fixed point of F is a 

pair (A,a), where A is a K-object and 

: ( )a F A A  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and 

a is any arrow from F(A) to A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       

Recall that a cocone   of an chain    is a K-

object X and a collection of K –arrows 

 : | 0i iD X i    such that 1i i io f    

for all 0i  . We sometimes write : X   as 

a reminder of the arrangement of ' s  components 

Similarly, a colimit : X  is a cocone with 

the property that if 
': X   is also a cocone 

then there exists a unique mediating arrow 
':k X X  such that for all 0,, i ii v k o  . 

Colimits of chains  are sometimes referred to 

as limco its . Dually, an 
op chain   in K is 

a diagram of the following form: 
1 2

1 2 .....
of f f

oD D D    
 
A cone 

: X   of an 
op chain    is a K-object 

X and a collection of K-arrows  : | 0i iD i   

such that for all 10, i i ii f o    . An  
op -

limit of an 
op chain     is a cone : X   

with the property that if 
': X  is also a cone, 

then there exists a unique mediating arrow 

':k X X  such that for all 0, i ii o k    . 

We write k  (or just  ) for the distinguish initial 

object of K, when it has one, and A  for the 

unique arrow from   to each K-object A. It is also 

convenient to write 
1 2

1 2 .....
f f

D D    to 

denote all of   except oD  and 0f . By analogy, 

 
 is  | 1i i  . For the images of   and   

under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of 

F – that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 

 
Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 

 Theorem 1.4 Let a DAG G given in which 

each node is a random variable, and let a discrete 

conditional probability distribution of each node 

given values of its parents in G be specified. Then 

the product of these conditional distributions yields 

a joint probability distribution P of the variables, 

and (G,P) satisfies the Markov condition. 
 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

Where iPA is the set of parents of iX of in G and 

( | )i iP x pa is the specified conditional probability 

distribution. First we show this does indeed yield a 

joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 
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variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the 

conditional distributions they notationally represent 

in the joint distribution. Finally, we show the 

Markov condition is satisfied. To do this, we need 

show for 1 k n   that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of 

in G. Since k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , 

order the nodes so that all and only nondescendents 

of kX precede kX in the ordering. Note that this 

ordering depends on k , whereas the ordering in the 

first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

 

We define the 
thm cyclotomic field to be the field 

  / ( ( ))mQ x x
 
Where ( )m x is the 

thm

cyclotomic polynomial.   / ( ( ))mQ x x  ( )m x  

has degree ( )m over Q since ( )m x has degree 

( )m . The roots of ( )m x  are just the primitive 

thm roots of unity, so the complex embeddings of 

  / ( ( ))mQ x x are simply the ( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it 

follows that ( ) ( )k

m mQ Q  for all k relatively 

prime to m . In particular, the images of the i

coincide, so   / ( ( ))mQ x x is Galois over Q . 

This means that we can write ( )mQ  for 

  / ( ( ))mQ x x without much fear of ambiguity; 

we will do so from now on, the identification being 

.m x  One advantage of this is that one can 

easily talk about cyclotomic fields being extensions 

of one another,or intersections or compositums; all 

of these things take place considering them as 

subfield of .C  We now investigate some basic 

properties of cyclotomic fields. The first issue is 

whether or not they are all distinct; to determine 

this, we need to know which roots of unity lie in 

( )mQ  .Note, for example, that if m is odd, then 

m is a 2 thm root of unity. We will show that this 

is the only way in which one can obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ 

so the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ  

has degree ( )mn
 
over  Q , so we must have 

   ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2 For any m and n  
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 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 

 

PROOF.    Write 1 1

1 1...... ....k ke fe f

k km p p and p p

where the ip are distinct primes. (We allow 

i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 

An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 

Mutual information measures the information 

transferred when ix  is sent and iy  is received, and 

is defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely 

connected to the corresponding ix  , and so they 

constitute an input –output pair ( , )i ix y  for which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the 

self-information that corresponds to the input ix
 
In 

a very noisy channel, the output iy and input ix

would be completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y
  and also ( , ) 0;i jI x y  that is, 

there is no transference of information. In general, a 

given channel will operate between these two 

extremes. The mutual information is defined 

between the input and the output of a given channel. 

An average of the calculation of the mutual 

information for all input-output pairs of a given 

channel is the average mutual information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful 

for modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 

2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  is 

usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 
the noisy channel, and is a function of the backward 

conditional probability. The observation of an 

output symbol jy provides ( ) ( )XH X H
Y

  bits 

of information. This difference is the mutual 

information of the channel. Mutual Information: 

Properties Since 



 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)                ISSN: 2248-9622              www.ijera.com  

Vol. 2, Issue 6, November- December 2012, pp.282-310 

294 | P a g e  

 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 

( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

This last entropy is usually called the noise entropy. 

Thus, the information transferred through the 

channel is the difference between the output entropy 

and the noise entropy. Alternatively, it can be said 
that the channel mutual information is the difference 

between the number of bits needed for determining 

a given input symbol before knowing the 

corresponding output symbol, and the number of 

bits needed for determining a given input symbol 

after knowing the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information expression is a 

difference between two quantities, it seems that this 

parameter can adopt negative values. However, and 

is spite of the fact that for some , ( / )j jy H X y  

can be larger than ( )H X , this is not possible for 

the average value calculated over all the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

The above expression can be applied due to the 

factor ( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that 

fits the condition 1ii
Q  . It can be concluded 

that the average mutual information is a non-

negative number. It can also be equal to zero, when 

the input and the output are independent of each 

other. A related entropy called the joint entropy is 

defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 

 

Theorem 1.5: Entropies of the binary erasure 

channel (BEC) The BEC is defined with an alphabet 

of two inputs and three outputs, with symbol 

probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ( )p x an 

arbitrary probability density function on Euclidean 

n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

 
Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 
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( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets , 1, 2,..., ,iB i u

form the desired code. Thus assume that the process 

terminates after t  steps. (Conceivably 0t  ). We 

will show t u  by showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  

Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 

I. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is 

easy to verify that this is in fact an ideal, and that it 

consist of all finite sums of the form i i
rs  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by 

a b . The ideal generated by  

 | ,ab a a b b  is denoted by ab . Note that 

ab a b  . Clearly ab consists of all finite sums 

i i
a b  with ia a  and ib b , and if 

1( ,..., )ma a a  and 1( ,..., )nb b b , then 

1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an ideal 

of A. The set of cosets of a in A forms a ring /A a
, and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b   is a one to 

one correspondence between the ideals of /A a  

and the ideals of A  containing a An ideal p  if 

prime if p A  and ab p a p    or b p . 

Thus p  is prime if and only if /A p  is nonzero 

and has the property that  

0, 0 0,ab b a      i.e., /A p is an 

integral domain. An ideal m  is maximal if |m A  

and there does not exist an ideal n  contained 

strictly between m and A . Thus m is maximal if 

and only if /A m  has no proper nonzero ideals, and 

so is a field. Note that m  maximal   m prime. 

The ideals of A B  are all of the form a b , with 

a  and b  ideals in A  and B . To see this, note that 

if c  is an ideal in  A B  and ( , )a b c , then 

( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 

Let A  be a ring. An A -algebra is a ring B  

together with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e.,  0R 

. Polynomial rings.  Let  k  be a field. A monomial 

in 1,..., nX X  is an expression of the form 

1

1 ... ,naa

n jX X a N  . The total degree of the 

monomial is 
ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

a A
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With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

i.e., f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 

polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding 

whether ( )f g , namely, find r and check 

whether it is zero. Moreover, the Euclidean 

algorithm allows to pass from finite set of 

generators for an ideal in  k X to a single 

generator by successively replacing each pair of 

generators with their greatest common divisor. 
 

 (Pure) lexicographic ordering (lex). Here 

monomials are ordered by lexicographic(dictionary) 

order. More precisely, let 1( ,... )na a   and 

1( ,... )nb b   be two elements of 
n ; then  

   and  X X  (lexicographic ordering) if, 

in the vector difference    , the left most 

nonzero entry is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn’t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 

Graded reverse lexicographic order (grevlex). Here 
monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if 
i ia b  , or 

i ia b   and in 

   the right most nonzero entry is negative. 

For example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on 

the monomials in  1,... nk X X . Then we can write 

an element f  of  1,... nk X X  in a canonical 

fashion, by re-ordering its elements in decreasing 

order. For example, we would write 

2 2 3 2 24 4 5 7f XY Z Z X X Z   
  

as 
3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    

  
or 

2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 

0 ;  

 The leading coefficient of 
f

to be LC(
f

)=
0

a ; 

 The leading monomial of  
f

to be LM(
f

) 

= 0X


; 

 The leading term of 
f

to be LT(
f

) = 

0

0
a X



   

For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, 

the leading monomial is 
2XY Z , and the leading 

term is  
24XY Z . The division algorithm in 

 1,... nk X X . Fix a monomial ordering in 
2 . 

Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm 

then constructs polynomials 1,... sa a  and r   such 

that 1 1 ... s sf a g a g r      Where either 

0r   or no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 

1( ) | ( )LT g LT f , divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 

1 with 2r  for f : 
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1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 

ideal 
2 3( )a Y X   contains 

2 3Y X but not 

2Y  or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, 

and let  |A X a  . Then A satisfies the 

condition , ( )nA           

And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A   . Conversely, of A  is 

a subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by  |X A 

is a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   

If a permutation is chosen uniformly and at random 

from the !n  possible permutations in ,nS  then the 

counts 
( )n

jC  of cycles of length j  are dependent 

random variables. The joint distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy’s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    when ,j jc m  which 

occurs between the ingredients in Cauchy’s formula 

and the falling factorials in the moments. Write 

jm jm . Then, with the first sum indexed by 

1( ,... ) n

nc c c    and the last sum indexed by  

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 

0jd   for ,j n m   and a random permutation 

in n mS   must have some cycle structure 

1( ,..., )n md d  . The moments of 
( )n

jC   follow 

immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the jZ  are independent Poisson-distribution 

random variables that satisfy ( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides 

a formula for the joint distribution of the cycle 

counts ,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the 

inclusion-exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the “property” G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  
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not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 

are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 

moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the 

intersection. There are 
[ ] / ( !)rj rn j r  such 

intersections. For the other case, some two distinct 

properties name some element in common, so no 

permutation can have both these properties, and the 
r -fold intersection is empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the 

number of permutations having exactly k  

properties is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

Which simplifies to (1.1) Returning to the original 

hat-check problem, we substitute j=1 in (1.1) to 

obtain the distribution of the number of fixed points 

of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 
( )n

j d jC Z  

where (1/ )j oZ P j   to describe this. Infact, the 

limit random variables are independent. 

 

Theorem 1.6   The process of cycle counts 

converges in distribution to a Poisson process of   

with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

Where the , 1, 2,...,jZ j   are independent 

Poisson-distributed random variables with  

1
( )jE Z

j
   

Proof.  To establish the converges in distribution 

one shows that for each fixed 1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

The proof of Theorem says nothing about 

the rate of convergence. Elementary analysis can be 

used to estimate this rate when 1b  . Using 

properties of alternating series with decreasing 

terms, for 0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  


  

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  
We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C  of 
( )

1

nC  and the 

distribution 1( )L Z  of 1Z
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Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



  

Where 
 
'

1,2,7
( )n  refers to the quantity derived 

from 
'Z . It thus follows that 

( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  and 

01( )B  are satisfied and if 
'

( )g

i O i    from 

some 
' 0,g   since, under these circumstances, 

both  
1 '

1,2,7
( )n n  and   

1

1,2,7
( )n n  tend to 

zero as .n   In particular, for polynomials and 

square free polynomials, the relative error in this 

asymptotic approximation is of order 
1n

 if 
' 1.g    

 

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where 
 7,7

( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  
It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 
  

[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


   

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


 
[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 


  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b

r s

b

n
n n P T r P T s r s

P

n ET

P n












 

 



  



 

  

Hence we may take 
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 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P
















  

  
  



  

 

Required order under Conditions 0 1( ), ( )A D  and 

11( ),B  if ( ) .S    If not, 
   10.8

n
 can be 

replaced by 
   10.11

n
in the above, which has the 

required order, without the restriction on the ir  

implied by ( )S   . Examining the Conditions  

0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  

that is, that we should need 1

2
( )

a

ill
l O i 


   

to hold for some 1 1a  . A first observation is that a 

similar problem arises with the rate of decay of 1i  

as well. For this reason, 1n  is replaced by 1n


. This 

makes it possible to replace condition 1( )A  by the 

weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for 
   7,7

,n b  to be 

of order ( / );O b n   the decay rate requirement of 

order 
1i  

 is shifted from 1i  itself to its first 

difference. This is needed to obtain the right 

approximation error for the random mappings 

example. However, since all the classical 

applications make far more stringent assumptions 

about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 
estimate of the difference

( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far 

tail element from 1n


 of the form 1 1( ) ( ),n u n   

which is only small if 1 1,a   being otherwise of 

order 11( )aO n  
 for any 0,   since 2 1a   is 

in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n   
 in the 

estimate of the difference 

[ ] [ 1],bn bnP T s P T s     which, in the 

remainder of the proof, is translated into a 

contribution of order 11( )aO tn   
for differences 

of the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 

0   in 
 7.7

( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 

difference in point probabilities is improved to an 

estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n   

for any 0  , to replace 
 7.7

( , ).n b  This would 

be of the ideal order ( / )O b n for large enough ,b  

but would still be coarser for small .b   

 

 

With b and n  as in the previous section, we wish to 

show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

Where 
 

121 1

7.8
( , ) ( [ ])n b O n b n b n        for 

any 0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula  

 

0

0 0

( ( [1, ]), ( [1, ]))

[ ]
[ ] 1

[ ]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n 

  
   

 


 

  

Now we observe that  

 

[ /2]

0
0

0 00 0

0

[ /2] 1

2 2

0 0 0
/2

0

10.5(2)2 2

0

[ ] [ ]
[ ] 1

[ ] [ ]

[ ]( [ ] [ ])

4 ( max [ ]) / [ ]

[ / 2]

3 ( / 2, )
8 , (1.1)

[0,1]

n

bn b
b

r rn n

n

b bn bn

s n

b b n
n s n

b

b

P T n r P T r
P T r

P T n P T n

P T s P T n s P T n r

n ET P T s P T n

P T n

n b
n ET

P





 

 



 



   
   

  

      

   

 

 

 



  

We have   
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     

0[ /2]

0

0

[ /2]

0

0

[ /2]

0 0

0

0 02
0 00

1

010.14 10.8

[ ]

[ ]

( [ ]( [ ] [ ]

( )(1 )
[ ] [ ] )

1

1
[ ] [ ]

[ ]

( , ) 2( ) 1 4 ( )

6

bn

n

r

n

b bn bn

s

n

b n

s

b b

r sn

P T r

P T n

P T s P T n s P T n r

s r
P T s P T n

n

P T r P T s s r
n P T n

n b r s n K n



   



 

 

 

 





 
       

 

  
   

 

   


    









 

 

  



0 10.14

2 2

0 0 10.8

( , )
[0,1]

4 1 4 ( )

3
( ) , (1.2)

[0,1]

b

b

ET n b
nP

n ET K n

nP








  



   

  

 
The approximation in (1.2) is further simplified by 

noting that  

[ /2] [ /2]

0 0

0 0

( )(1 )
[ ] [ ]

1

n n

b b

r s

s r
P T r P T s

n



 

  
  

 
 

 

0

0

( )(1 )
[ ]

1
b

s

s r
P T s

n



 

  
  

 
  

 

[ /2]

0 0

0 [ /2]

1 2 2

0 0 0

( ) 1
[ ] [ ]

1

1 ( 1 / 2 ) 2 1 , (1.3)

n

b b

r s n

b b b

s r
P T r P T s

n

n E T T n n ET



 

 

 

 
  



    

 

 
 

and then by observing that  

 

0 0

[ /2] 0

1

0 0 0 0

2 2

0

( )(1 )
[ ] [ ]

1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)

b b

r n s

b b b b

b

s r
P T r P T s

n

n ET P T n E T T n

n ET







 





  
  

 

    

 

 

 

 

Combining the contributions of (1.2) –(1.3), we thus 

find tha

 

    

 

1

0 0

0 0

7.8

1

010.5(2) 10.14

10.82 2

0

( ( [1, ]), ( [1, ]))

( 1) [ ] [ ]( )(1 )
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3
( / 2, ) 2 ( , )

[0,1]

24 1 ( )
2 4 3 1 (1.5)
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r s

b
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d L C b L Z b

n P T r P T s s r

n b

n b n ET n b
P
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n ET
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







 


 






  







 
      

 



 

  
    

  

 

 

 

The quantity 
 7.8

( , )n b is seen to be of the order 

claimed under Conditions 0 1( ), ( )A D  and 12( )B , 

provided that ( ) ;S     this supplementary 

condition can be removed if 
 10.8

( )n
 is replaced 

by 
 10.11

( )n
   in the definition of 

 7.8
( , )n b , has 

the required order without the restriction on the ir  

implied by assuming that ( ) .S   Finally, a 

direct calculation now shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b

r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 

Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin 

O). Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

“standard origin”.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors}  

Operations with vectors: multiplication by a 

number, addition. Operations with points and 

vectors: adding a vector to a point (giving a point), 

subtracting two points (giving a vector). 
n treated 

in this way is called an n-dimensional affine space. 

(An “abstract” affine space is a pair of sets , the set 

of points and the set of vectors so that the operations 

as above are defined axiomatically). Notice that 

vectors in an affine space are also known as “free 
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vectors”. Intuitively, they are not fixed at points and 

“float freely” in space. From 
n considered as an 

affine space we can precede in two opposite 

directions: 
n  as an Euclidean space  

n as an 

affine space  
n as a manifold.Going to the left 

means introducing some extra structure which will 

make the geometry richer. Going to the right means 

forgetting about part of the affine structure; going 

further in this direction will lead us to the so-called 

“smooth (or differentiable) manifolds”. The theory 

of differential forms does not require any extra 

geometry. So our natural direction is to the right. 

The Euclidean structure, however, is useful for 

examples and applications. So let us say a few 

words about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 
consider lines and planes, and quadric surfaces like 

an ellipsoid. However, we cannot discuss such 

things as “lengths”, “angles” or “areas” and 

“volumes”. To be able to do so, we have to 

introduce some more definitions, making 
n a 

Euclidean space. Namely, we define the length of a 

vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined possesses 

natural properties that we expect: is it always non-

negative and equals zero only for coinciding points; 

the distance from A to B is the same as that from B 

to A (symmetry); also, for three points, A, B and C, 

we have ( , ) ( , ) ( , )d A B d A C d C B   (the 

“triangle inequality”). To define angles, we first 

introduce the scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also 

denote by dot: . ( , )a b a b , and hence is often 

referred to as the “dot product” . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral 

multiple of 2  . For this definition to be consistent 

we have to ensure that the r.h.s. of (4) does not 

exceed 1 by the absolute value. This follows from 

the inequality 

2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three 

names are applied in different books). One of the 

ways of proving (5) is to consider the scalar square 

of the linear combination ,a tb  where t R . As  

( , ) 0a tb a tb    is a quadratic polynomial in t  

which is never negative, its discriminant must be 

less or equal zero. Writing this explicitly yields (5). 

The triangle inequality for distances also follows 

from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  
which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx  are linear functions giving on 

an arbitrary vector h  its coordinates 
1 2, ,...,h h  

respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx   at 

0t t  and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when

0h  . Combining it together, for the increment 

of ( ( ))f x t   we obtain 
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0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that ( ) 0t   when 

0t   (we used the linearity of 0( )df x ). By the 

definition, this means that the derivative of 

( ( ))f x t  at 0t t  is exactly 0( )( )df x  . The 

statement of the theorem can be expressed by a 

simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  

To calculate the value Of df  at a point 0x  on a 

given vector   one can take an arbitrary curve 

passing Through 0x  at 0t  with   as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 

usual derivative Now, almost without change the 

theory generalizes to functions taking values in  
m  instead of  . The only difference is that now 

the differential of a map : mF U    at a point x  

will be a linear function taking vectors in 
n  to 

vectors in 
m (instead of  ) . For an arbitrary 

vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 

In this matrix notation we have to write vectors as 

vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 
Proof.  By the definition of the velocity vector, 

.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  

Where ( ) 0t    when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

  

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 

can be viewed as the velocity vector of some curve 
passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 
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Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n  with the 

velocity vector 
.

x . Basically, we need to know to 

which vector in  
p it is taken by ( )d GoF . the 

curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve ( ( ))F x t  in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary 

vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

Where 
idF  are taken from (1). In other words, to 

get ( )d GoF  we have to substitute into (2) the 

expression for 
i idy dF  from (3). This can also 

be expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

 

 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written 

as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my  on 

nx  is given by the map F , the 

dependence of 
pz  on 

my  is given by the 

map ,G  and the dependence of  
pz on 

nx is given by the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU  

. Consider also another copy of 
n , denoted for 

distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this system are 

the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y   

Here the variables 
1( ..., )ny y  are the “new” 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  

( ) : ( ), ( ) (1)x t r r t t     
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We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )), ( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   

 Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the “standard” coordinates: 
. . .

1 2x e x e y  . Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

From where it follows that these vectors make a 

basis at all points except for the origin (where 

0r  ). It is instructive to sketch a picture, drawing 

vectors corresponding to a point as starting from 

that point. Notice that  ,x x
r 

 
 

 are, 

respectively, the velocity vectors for the curves 

( , )r x r    0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if 

as a basis we take : , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

A characteristic feature of the basis ,re e  is that it 

is not “constant” but depends on point. Vectors 

“stuck to points” when we consider curvilinear 

coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 

velocity vectors of the coordinate lines 
1( ,..., )i nx x x x   (all coordinates but 

ix  are 

fixed). Since we now know how to handle velocities 

in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 0

nx   to vectors attached to 

the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a 

change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in 

the standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in the 

polar coordinates. In particular, we see that this is 

again a 1-form, a linear combination of the 

differentials of coordinates with functions as 

coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear 

function on vectors at every point of U : 
1

1( ) ... , (1)n

n         

If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 
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functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 

, the integral 



  does not change if we change 

parametrization of   provide the orientation 

remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

Let p  be a rational prime and let ( ).pK    

We write   for p  or this section. Recall that K  

has degree ( ) 1p p    over .  We wish to 

show that  .KO    Note that   is a root of 

1,px   and thus is an algebraic integer; since K  

is a ring we have that   .KO   We give a 

proof without assuming unique factorization of 

ideals. We begin with some norm and trace 

computations. Let j  be an integer. If j is not 

divisible by ,p  then 
j  is a primitive 

thp  root of 

unity, and thus its conjugates are 
2 1, ,..., .p   

 

Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

  

If p  does divide ,j  then 1,j   so it has only 

the one conjugate 1, and  
/ ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

We also need to compute the norm of 1  . For 

this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 

for determining the ring of integers KO  is the 

following. 

 

LEMMA 1.9 

  (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose 

now that the inclusion is strict. Since 

(1 ) KO  is an ideal of   containing p  

and p is a maximal ideal of  , we must have  

(1 ) KO   
 
Thus we can write 

 1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex embeddings of K  

(which we are really viewing as automorphisms of 

K ) with the usual ordering.  Furthermore, 1
j  

is a multiple of 1   in KO  for every 0.j   

Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number and 

let | ( )pK    be the 
thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 

 

2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
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By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next 

consider the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 
  

Example 1.4   Let K   , then the local ring 

( )p  is simply the subring of   of rational 

numbers with denominator relatively prime to p . 

Note that this ring   ( )p is not the ring p of p -

adic integers; to get  p one must complete ( )p . 

The usefulness of ,K pO  comes from the fact that it 

has a particularly simple ideal structure. Let a be 

any proper ideal of ,K pO  and consider the ideal 

Ka O  of .KO  We claim that 

,( ) ;K K pa a O O     That is, that a  is generated 

by the elements of a  in .Ka O  It is clear from 

the definition of an ideal that ,( ) .K K pa a O O   

To prove the other inclusion, let   be any element 

of a . Then we can write /    where 

KO   and .p   In particular, a   (since 

/ a    and a  is an ideal), so KO   and 

.p   so .Ka O    Since ,1/ ,K pO   this 

implies that ,/ ( ) ,K K pa O O      as 

claimed.We can use this fact to determine all of the 

ideals of , .K pO  Let a  be any ideal of ,K pO and 

consider the ideal factorization of Ka O in .KO  

write it as 
n

Ka O p b   For some n  and some 

ideal ,b  relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  
, , ,( ) n n

K K p K p K pa a O O p bO p O      

Since , .K pbO  Thus every ideal of ,K pO  has the 

form ,

n

K pp O  for some ;n  it follows immediately 

that ,K pO is noetherian. It is also now clear that 

,

n

K pp O is the unique non-zero prime ideal in ,K pO

. Furthermore, the inclusion , ,/K K p K pO O pO  

Since , ,K p KpO O p   this map is also 

surjection, since the residue class of ,/ K pO    

(with KO   and p  ) is the image of 
1 

 

in / ,K pO  which makes sense since   is invertible 

in / .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-

zero prime ideal of ,K pO is maximal.  To 

show that ,K pO is a Dedekind domain, it remains to 

show that it is integrally closed in K . So let 

K   be a root of a polynomial with coefficients 

in  , ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x
 

 





    With i KO   and 

.i K pO   Set 0 1 1... .m      Multiplying by 

m  we find that   is the root of a monic 

polynomial with coefficients in .KO  Thus 

;KO   since ,p   we have 

,/ K pO    . Thus  ,K pO is integrally close 

in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free -

module of rank ,n    

// ( )K K KO N O   Will have order 
/ ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     

This completes the proof.  In the general case, let L  

be the Galois closure of K  and set [ : ] .L K m   
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III. RESULTS 

In this section, we provide results of controlled 

inflation in arteries of an excised and a beating 

heart. An investigation of the performance of the 

control system is presented for various experimental 

scenarios. 

A.  Inflation control in an excised heart 

Fig. 5 demonstrates the results of an experiment in 

which two target diameters of 2.3 and 2.7 mm were 

sequentially targeted. IVOCT images at different 

diameter milestones, i.e. at initial diameter and at 

each of the two target diameters. The real-time 

values of the balloon diameter, the delivered 

volume, and the inflation pressure. The ones to 

follow, all diameter values are presented in 

geometrical distances. The results obtained from this 

experiment proved the ability of the control system 

to provide a good convergence to various target 
diameters. Therefore, the results of this experiment 

extended the validation of the performance of the 

control system to compliant balloons and real 

arteries. The described procedure using an excised 

heart, could be used with various target diameter 

sequences and various durations to maintain each 

target diameter to study the responses of the vessel 

wall and plaques, e.g. deformation and rupture, 

under repeatable and controlled conditions. 

Satisfactory results in this excised heart experiment, 

where the control system was employed, as well as 

successful balloon detection in beating heart images, 
where the control system was not employed, set the 

table for control experiments in a beating heart setup 

which provides conditions very close to in vivo 

conditions. 

 

B. Inflation control in a beating heart 

In this section, we present the results from three 

experimental scenarios. The results from the first 

scenario correspond to controlled inflation for 

various target diameters. The results from the 

second scenario correspond to three experiments 

with various flow rates. The results from the third 

scenario correspond to controlled inflation to 

achieve a sequence of various target diameters.  

 Various target diameters 

 We performed two inflation control 

experiments using the same flow rate but different 
target diameters. At both target diameters, the blood 

was not yet fully displaced and the balloon had not 

yet deformed the artery. The goal was to verify if 

the balloon diameter could be controlled in the 

initial phase of the inflation when it was still 

surrounded by blood. The results, including the real-

time values of the diameter, the volume, and the 

pressure, obtained from these two control 

experiments. In both experiments, the flow rate to 

deliver or withdraw the liquid was 250 mL/h. The 

initial diameter was approximately 1.7 mm. The 

target diameters were 2.1 mm and 2.3 mm. In order 

to characterize and compare the system response, in 

transient and steady state, we defined different 

performance characteristics, based on control 

engineering conventions and notations [18]:  

1) Rise time (Tr) determined the response time of 

the control system to achieve a new target diameter. 
The desired change in the diameter was the 

difference between the new target diameter and the 

current diameter. Rise time was defined as the 

difference between the times that 10 % and 90 % of 

the desired change in diameter were achieved.  

2) Percentage overshoot (PO) represented a criterion 

to determine the excessive growth of the diameter 

beyond the target value. It was calculated as:  

where D0 was the initial diameter, Dt was the target 

diameter, and Dmax was the maximum diameter 

achieved.  

3) Settling time (Ts) was defined as a parameter that 
determined convergence. It was defined as the time, 

after which the convergence error was smaller than 

25 % of the difference between the initial and the 

target diameters:  

 

 The applied error margins for settling time 

are normally less than or equal to 5 %. The reason 

for choosing a larger value was that, in our 

experiments, artery contractions constantly 

disturbed the diameter value. Therefore, the 

diameter values did not settle within frequently used 
margins of the target diameters.  

4) Steady state diameter (Dss) was defined to 

determine the degree of convergence. After the 

settling time, the system was considered to be in 

steady state. We calculated the average and the 

standard deviation of the diameter in steady state. 

Before calculating the performance characteristics, 

the diameter response versus time was filtered with 

a low-pass filter to reduce noise. In both cases, 

although fluctuations were caused by arterial 

contractions, the difference between the target 

diameter and the steady-state average diameter was 
not larger than 20 μm. The rise time and the settling 

time were increased by 2 s and 1 s, respectively, 

when the target diameter was increased from 2.1 

mm to 2.3 mm. The percentage overshoot decreased 

when the target diameter was increased. 

 Various flow rates 

 We performed three control experiments 

with the same target diameter but using various flow 

rates. The results, including the real-time values of 

the diameter, the volume and the pressure obtained 

from these control experiments. The initial diameter 
was approximately 1.7 mm. The target diameter was 

2.6 mm. To control the diameter in these 

experiments, delivery and withdrawal of liquid was 

performed at flow rates of 100, 250 and 400 mL/h. 

At the target diameter, the blood was displaced and 

the artery was deformed by the balloon. The 

difference between the target diameter and the 
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steady-state average diameter was on the order of 10 

μm. Increasing the flow rate improved the rise time. 

The rise time corresponding to the flow rate of 100 

mL/h was significantly larger than it was in the 

other experiments, resulting in a much slower 

convergence. Although increasing the flow rate 

could improve the rise time, it was expected to 
increase the percentage overshoot or oscillations in 

delivery/withdrawal stages as was also observed in 

experiments with phantoms [13]. Such effect was 

confirmed in the calculated percentage overshoots 

and standard deviations of the steady-state diameter. 

The obtained performance characteristics may be 

affected by the superimposed effect of the 

oscillatory contractions of the artery. Nonetheless, 

they provide a preliminary assessment of the control 

system performance. 

IV. CONCLUSION 

 In this study, we extended the validity of a 

previously proposed methodology to control balloon 

inflation inside porcine arteries. The experiments 

were performed in excised and beating hearts. In the 

excised heart experiment, the goal was to investigate 

if the response time of the control method was 

sufficient for inflation of a compliant balloon inside 

porcine arteries. In the beating heart experiment, the 

first goal was to investigate if the edge detection 

algorithm was functional when blood was present in 
IVOCT images. The second goal was to investigate 

if the speed of the control system was sufficient to 

provide desired target diameters in presence of 

arterial contractions. The control system provided 

good convergence to target diameters in the excised 

heart experiment. This experiment provided us with 

a smooth transition to beating heart experiments. In 

the beating heart experiments, the balloon detection 

algorithm was successfully applied to estimate the 

balloon diameter in real-time. Although artery 

contractions constantly caused disturbances in the 
actual diameter values, the control system provided 

average steady-state diameters close to the target 

diameters. In this study, we worked on sound 

arteries. Future work should aim at performing a 

similar study on diseased arteries. Diseased arteries 

may bring in additional challenges since structures 

like calcifications can resist balloon inflation. For 

diseased arteries, more parameters, like the balloon 

shape, might be needed from the OCT monitoring to 

provide safe and efficient controlled balloon 

inflation. Future work should also aim at assessing 

of the clinical value or our proposed methodology. 
We have successfully demonstrated that controlled 

inflation based on IVOCT monitoring is possible. 

The true usefulness of our methodology lies in the 

demonstration that it can lead to safer procedures in 

the clinical world. For example, our methodology 

opens the path to standard methods of performing 

multiple step inflations to provide safer artery 

extension before stenting. It also opens the door to 

new approaches to stent deployment. The validation 

of our methodology as a relevant clinical tool sets 

the table for exciting new research. 
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